Effect of pier shape and pier alignment on the equilibrium scour depth at single piers

Cristina Fael a,*, Rui Lança b, António Cardoso c

a Faculdade de Engenharia, Universidade da Beira Interior, Edifício II das Engenharias, Calçada Fonte da Lama, 6200-358 Covilhã, Portugal
b Instituto Superior de Engenharia/Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
c Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

A R T I C L E I N F O

Article info

Received 27 November 2014
Received in revised form 28 March 2016
Accepted 1 April 2016
Available online 8 April 2016

Keywords:
Scour
Pier shape
Pier alignment

A B S T R A C T

The equilibrium scour depth at uniform single bridge piers depends on a large number of variables, including the pier horizontal cross-section shape and its alignment angle towards the flow direction. The influence of these variables has been studied by only a few researchers, mostly, on the basis of tests that were far from approaching equilibrium. This experimental study aims at revisiting the influence of piers' shape and alignment on local scouring for length–width ratios smaller than or equal to 4, by increasing the experimental evidence. Fifty five long-duration laboratory tests were run under steady, clear-water flow, close to the threshold for initiation of sediment motion. Five pier shapes were considered: circular, rectangular square-nosed, rectangular round-nosed, oblong, and zero-spacing (packed) pile-groups; the tested skew-angles were 0°, 30°, 45°, 60°, and 90°. It was concluded that i) the shape factor can be taken as 1.0, for rectangular round-nosed and oblong cross-section piers, and as 1.2, for rectangular square-nosed and packed pile-group cross-section piers, ii) the shape factor does not vary significantly with the duration of tests, this way confirming the robustness of the shape factors reported to date, iii) the effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of 1.0–1.2, and iv) for length–width ratios smaller than 4, the shape factor is of the same order of magnitude as the skew angle factor and should not be neglected.

1. Introduction

Local scour at bridge foundations is a rather common cause of bridges' failure. Consequently the prediction of the ultimate “equilibrium” scour depth is a key issue in bridge engineering. In spite of the progresses made on this topic during the last five or six decades, it remains a subject of concern in hydraulic engineering. According to Lança (2013), among others, the scour depth, \(d \), around uniform single piers depends on the flow depth, \(Dp \), slope of the energy line, \(S \), and acceleration of gravity, \(g \); fluid density, \(\rho \); and kinematic viscosity, \(\nu \); median grain size, \(D_{50} \); gradation coefficient, \(\sigma_p \); and density, \(\rho_s \), of the bed material; pier width, \(Dp \), alignment, and shape of the horizontal cross-section; channel width, \(B \), bed slope, \(S_b \), cross-section geometry; and time, \(t \). Piers’ alignment and shape are usually accounted for through the coefficients \(K_p \) and \(K_s \), respectively.

For fully developed, clear-water uniform flow, in a wide rectangular flatbed channel whose bed is composed of uniform, non-ripple forming sand, the non-dimensional scour depth can be shown to read (Lança, 2013):

\[
\frac{d_s}{D_p} = \varphi \left(\frac{d}{D_p} \frac{U}{D_p} \frac{U}{U_c} \frac{D_{50}}{D_p} K_p K_s \right) \tag{1}
\]

In this equation, \(U \) is the average velocity of the undisturbed approach flow and \(U_c \) is the approach flow velocity for the threshold condition of the sediment entrainment. Eq. (1) applies if scouring is free of viscous effects. Compared, for instance, with the framework suggested Ettema et al. (2011), the above equation does not include the Froude number or any Froude-like number since this is not compatible with the simultaneous inclusion of flow intensity, \(U/U_c \) and \(D_p/D_{50} \). This is clear, e.g., in Melville (1992). For constant \(U/U_c \) (usually \(U/U_c \approx 1.0 \) in laboratory conditions so as to...
maximize the scour depth), the non-dimensional equilibrium scour depth becomes:
\[
d_{se} = \phi \left(\frac{d}{D_p} \frac{D_p}{D_{so}} \cos \theta \right)
\]
(2)

since the scour depth no longer evolves at equilibrium.

The effect of flow shallowness, \(d/D_p\), on scouring is unanimously recognized as inescapable and it has been the subject of many studies on scouring. Most of these studies have successively assumed that the equilibrium scour depth does not depend on sediment coarseness, \(D_p/D_{so}\), for \(D_p/D_{so} > 25-50\) and this is still the prevailing view in the hydraulics community. However, Sheppard et al. (2004) and Lee and Sturm (2009) have shown that the effect of \(D_p/D_{so}\) cannot be discarded for much higher values of \(D_p/D_{so}\). Laća et al. (2013b) have corroborated these findings. The predictors issued from these recent studies account for the simultaneous effects of the flow shallowness, \(d/D_p\), and sediment coarseness, \(D_{so}/D_{so}\). For practical use, such predictors necessarily require the application of multiplying factors to include the effects of flow intensity, pier shape, pier alignment, gradation coefficient and density of bed material, flow contraction, cross-section shape and time.

The pier shape multiplying factor is defined as the ratio between the scour depth at a pier with a given shape of the horizontal cross-section and the scour depth at the standard section-shape pier, all the other parameters kept constant. Likewise, the pier alignment or orientation factor is defined as the ratio between the scour depth at a pier aligned at a given angle (angle of attack) with the flow direction and the scour depth at an equal pier aligned with the flow direction (zero angle of attack), all the other parameters kept unchanged.

The effects of pier shape and alignment have been studied by few researchers (the most well-known being Laursen & Toch, 1956). Yet, a variety of pier shape factors, \(K_s\), were suggested by different researchers (e.g., Melville, 1997 or Melville & Coleman, 2000), based on very limited experimental data. With the exception of Laursen and Toch (1956), who have used the rectangular pier as the standard shape, all the others have chosen the circular pier for that purpose. Richardson and Davis (2001) suggested the following expression that fits the multiplying factor for the angle of attack, \(K_\theta\), obtained by Laursen and Toch (1956):
\[
K_\theta = (\cos \theta + L/D_p \sin \theta)^{0.65}
\]
(3)
where \(\theta\) is the angle of attack, \(D_p\) stands for the pier width and \(L\) is its length.

According to Richardson and Davis (2001), \(K_\theta\) should only be used if the angle of attack, \(\theta\), is higher than 5° and \(2 \leq L/D_p \leq 16\). It should be noted here that, according to Laursen and Toch (1956), \(K_s\) and \(K_\theta\) must not be used together since, in the above domain, the shape effect becomes negligible.

To the authors’ best knowledge, no systematic studies other than those of Laursen and Toch (1956) were performed on the effect of angle of attack on local scour. Therefore, improving and updating the angle of attack factor is essential, in particular, for values of \(L/D_p \leq 4\), close the lower validity limit of Eq. (3).

This experimental study aims at revisiting the influence of piers’ shape and alignment on local scouring, for uniform piers defined by \(L/D_p \leq 4\), by increasing the experimental evidence. It should be stressed here that most of the tests performed by Laursen and Toch (1956) lasted 3 h, under the assumption that, from there on, the pier alignment or orientation factor does not change. This is equivalent to assume that the scour holes remain self-similar, i.e., that their non-dimensional geometry does not change in time irrespective of the pier shape and alignment. This specific point is also addressed in this study.

2. Experimental setup and procedure

Fifty five tests were performed in a 28.00 m long, 2.00 m wide and 1.00 m deep flume of the Universidade da Beira Interior. Sixteen of these tests were already published by Laća et al. (2013a) in a different context: four correspond to cylindrical piers, twelve correspond to special (packed) pile-groups, where piles touch each other (\(s/b=1\), \(s=\) spacing between pile axes; \(b=\) pile diameter, cf. Table 1).

At the entrance of the flume, two honeycomb diffusers aligned with the flow direction smoothed the flow trajectories and guaranteed the uniform cross-wise flow distribution. Immediately downstream the diffusers, a 5.00 m long bed-reach was covered with small gravel to provide proper roughness and guarantee fully developed rough turbulent flow. The central reach of the flume, starting at 14.00 m from the entrance, included a 3.00 m long, 2.00 m wide and 0.60 m deep recess box in the channel bed. A uniform quartz sand (\(\rho_s = 2650 \text{ kg m}^{-3}\); \(D_{so}=0.86 \text{ mm} ; \sigma_s =1.36\)) was used to fill the recess box. At the downstream end of the flume, a tailgate allows the regulation of the water depth, which was kept equal to 0.20 m.

Five different pier shapes were considered in the study, according to Table 1, where the associated values of \(D_p\) are summarized. All pier, except those circular shaped, were 200 mm long and installed with different angles of attack at 1.0 m from the upstream boundary of the bed recess box: these angles were \(\theta=0°, 30°, 45°, 60°\) and 90° for \(\theta\) defined according to Table 1.

Prior to each experiment, the sand bed in the recess box was carefully leveled with the contiguous concrete bed. The area located around the pier was covered with a thin metallic plate to avoid uncontrolled scour at the beginning of each experiment. The flume was then filled gradually, imposing a high water depth and a low flow velocity. The discharge corresponding to the chosen approach flow velocity, measured by an electromagnetic flow meter with an accuracy of ±0.5% of full scale, was then adjusted to pass through the flume. The flow depth was regulated by adjusting the downstream tailgate and measured with the help of a point gauge to the accuracy of ±1 mm. Once the discharge and flow depth were established, the metallic plate was removed and the experiment started.

Scour immediately initiated and the depth of scour hole was measured, to an accuracy of ±1 mm, with another(adapted) point gauge, approximately every 5 min during the first hour. Afterwards, the interval between measurements increased and, after the first day, only a few measurements were carried out each day. In agreement with Simarro et al. (2011), when at least 7 days had passed, the experiments were stopped. Fig. 1 shows the scour depth time evolution for test 50, which is similar to all the others.

The sand bed approach reach located upstream the piers stayed undisturbed through the entire duration of the experiments; this long term stability ensured that the scour depth was not supplemented by upstream bed degradation, as documented in Fig. 2. It should be noted here that no ripples developed along the tests because a practically uniform sand, characterized by \(D_{so}=0.86 \text{ mm}\), was used, which is physically incompatible with development of those bed forms (see, e.g., Simons & Sentürk, 1992).

3. Results and discussion

3.1. Data characterization

The values of the most important control variables and non-dimensional parameters characterizing the experiments, including those reported by Laća et al. (2013a), are summarized in Table 2. It can be concluded that a high relative flow depth \((d=0.200 \text{ m};\)
$d/D_{50}=232.6$) was always guaranteed. The average flow intensity, U/U_c, was kept constant and equal to 0.96, with U_c being calculated through the predictor of Neil (1967) as $U_c \approx 0.31$ m/s. The flow Froude number was always ≈ 0.22. The aspect ratio B/d was kept equal to 10.0, this way avoiding significant wall effects on the flow field.

The ratio of channel width to pier diameter, B/D_p, varied between 10 and 40. Contraction scour seemed absent since no bed degradation was observed over the contracted cross sections; this result agrees with others reported in Breusers and Raudkivi (1991), who have suggested that contraction scour is negligible for values of B/D_p as low as 2.0–2.5. Also, according to Ballio et al. (2009), contraction scour is null for $B/D_p \geq 10$. Thus, it is safe to state that contraction effects were not present in the present study.

The pier Reynolds number, $Re_p=UD_p/\nu$ ($\nu = \text{kinematic viscosity of the water}$), varied between 15,500 (for $D_p=50$ mm) and 62,000 ($D_p=200$ mm). It will be assumed here that viscous effects are negligible since the condition suggested by Franzetti et al. (1994) – $Re_p=UD_p/\nu > 7000$ – is satisfied.

Since the flow depth was kept constant and equal to 0.20 m, the issuing values of the flow shallowness were $d/D_p \approx [1.0, 1.33, 2.0, \text{ and } 4.0]$. Sediment coarseness, D_p/D_{50}, took also four values, $D_p/D_{50} \approx [58.14, 116.28, 174.42, \text{ and } 232.56]$, one per D_p. The effect of sediment coarseness reported by Sheppard et al. (1995, 1999, 2004), Lee and Sturm (2009) and Lança et al. (2013a) may be expected to be non-negligible. However, this effect will not influence the pier shape and the alignment factors since each pair of scour depths required to define a given factor was obtained for exactly the same sediment coarseness.
According to Franzetti et al. (1994), most of the experiments should be expected to have reached equilibrium since \(U_{d_0}D_p \) exceeded \(2 \times 10^6 \) \((t_d=\text{test duration}, \text{cf. Table 1}) \). However, equilibrium scour does not seem to have been unambiguously reached in any of the present experiments. For this reason, scour depth records were extrapolated to infinite time so as to obtain the equilibrium scour depth, \(d_{euc} \), as suggested by Lança et al. (2010). Fig. 1 also includes the plot of the 6-parameters polynomial function adjusted to the data so as to extend the scour depth record to infinite time. The equilibrium scour depths obtained through this fitting procedure are included in Table 1, together with those measured at end of each experiment, \(d_{mm} \). For sake of completeness, it should be noted that \(d_{euc}/d_{mm}=1.105 \pm 0.069 \).

3.2. Shape factor

In this study, the standard-shape pier was chosen to be the circular pier since the most spread scour predictors have been derived for this pier shape. This is the most common option (see, e.g., Melville, 1997). The values of \(K \) at equilibrium are presented in Fig. 3. It should be emphasized that all the non-dimensional parameters controlling the process, including the sediment coarseness and the flow shallowness, are exactly the
same for each K_s value. Fig. 3 includes ± 10% error bands around $K_s=1.2$ (continuous horizontal lines) and around $K_s=1.0$ (thin dashed lines). It is clear that the influence of the length–width ratio, L/D_p, is minor or non-existent within the experimental range, i.e., for $1.33 < L/D_p < 4.00$. For practical engineering applications it may be assumed that $K_s=1.0$ for rectangular round-nosed and oblong cross-section piers, and $K_s=1.2$ for rectangular square-nosed and pile-group cross-section piers.

Compared with the findings reported in the literature, namely by Melville (1997), it may be concluded that the oblong cross-section piers behave as circular cylinders or round nosed piers since K_s is identically equal to 1.0, with the 10% error band. The values of K_s for round-nosed ($K_s=1.0$) piers as well as for rectangular square-nosed piers ($K_s=1.2$) also confirm the values suggested by Melville (1997). The value referring to packed pile groups ($K_s=1.2$) could not be compared to others since they were not found in the literature. It should be noticed here that the increased shape coefficient for packed pile groups may derive from the increase of vorticity associated with the wake vortices shed from the successive recesses between contiguous piles.

Fig. 4 summarizes the values of the shape factor for rectangular square-nosed and the rectangular round-nosed piers after 3 h, 1 day, 3 days and 7 days and at equilibrium time (infinite time); the corresponding values for the oblong and the packed pile-group cross-section piers are included in Fig. 5. From Figs. 4 and 5, it becomes clear that, apart from two cases for $t=3$ h, the shape factors are constant in time, falling within the ± 10% error band around the suggested equilibrium values, which means that the scour holes remain practically self-similar, this way validating most of the results and explaining the success of the experimental study reported by Laursen and Toch (1956), whose tests lasted only 3 h.

As stated in the Introduction, it is commonly assumed, according to Richardson and Davis (2001), that $K_s=1.0$ for $\theta=0^\circ$, suggesting that this pier behaves mostly as a circular cylinder, the oblong shape was adopted, in this study, as the standard pier shape to derive the values of K_s for $\theta \neq 0$. Since the shape coefficient does not evolve in time, the results shown herein refer only to equilibrium. The values of K_s are given in Fig. 6 as a function of L/D_p for different skew angles, including $\theta=90^\circ$. For this angle, L and D_p are interchanged, as if θ were 0°, leading to values of $L/D_p=[0.25, 0.50, 0.75]$, represented as triangles in Fig. 6. In this case, the scaling scour depth was obtained at the cylindrical pier defined by $D_p=200$ mm.

Fig. 6 shows that, apart from the exception defined by $L/D_p=0.25$ for the rectangular round-nosed pier, the shape factor, K_s, is ≈ 1.2 for $\theta=90^\circ$ irrespective of the pier horizontal section shape. For $\theta \neq 90^\circ$, Fig. 6a and c shows that the shape factor does not appreciably vary with the skew angle for the rectangular square-nosed and the packed pile-group section piers, respectively, the exception being the latter for $L/D_p=4.0$. It remains practically equal to 1.2 as for $\theta=0^\circ$. On the contrary, Fig. 6b indicates that the shape factor increases for rectangular round-nosed piers as compared with the aligned equivalent (where $K_s \approx 1.0$), for $L/D_p=[1.33, 2.00]$ and $\theta=45^\circ, 60^\circ$, where the effect of the corners roundness seems to vanish and the rectangular nature of the cross-section seems to emerge. The explanation for these behaviors can only be speculative and deserves further investigation through the mapping of the velocity field, turbulence structure and vorticity around different pier shapes and alignment angles.

In short, contrary to what is usually assumed, the effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of 1.0–1.2.
3.3 Pier alignment factor

The pier alignment (or skew-angle) factor, K_θ, is the ratio between the scour depth at a pier with a given shape, implanted at a given skew angle, θ, and the scour depth at the same pier for $\theta = 0^\circ$.

The pier alignment factors derived in this study are presented in Fig. 7 together with the predictions of Eq. (3). Fig. 7a refers to $L/D_p = 4.0$ while Fig. 7b applies to $L/D_p = [1.33, 2.0]$. It must be reminded that $\theta = 90^\circ$ becomes, finally, $\theta = 0^\circ$: which means that this configuration may be treated through appropriate shape factors.

It is clear that Eq. (3) constitutes a precise predictor of K_θ for $L/D_p = 4.0$, while it tends to over-estimate K_θ for $L/D_p = [1.33, 2.0]$. For the latter cases, the following linear equations are suggested (see continuous lines in Fig. 6b) on the basis of the present experimental results:

$$K_\theta = 1 + \frac{4\theta}{1000} \quad \text{for} \quad L/D_p = 1.33$$

$$K_\theta = 1 + \frac{8\theta}{1000} \quad \text{for} \quad L/D_p = 2.0$$

As shown above, the pier shape is the same for any θ including $\theta = 0^\circ$. Consequently, the scour depth at a skewed pier necessarily reflects the effects of both shape and alignment and the shape factor – like the alignment factor – is conceptually inescapable. This is relevant whenever equilibrium scour is to be calculated at piers defined by small L/D_p on the basis of predictors derived for cylindrical piers. In this case, K_θ may be of the same order of magnitude as K_d, as shown in Figs. 5 and 7b.

4. Conclusions

The present study focus on the effects of pier shape and alignment on the equilibrium scour depth at uniform single piers. It covers four different pier shapes. Experiments were run for clear-water flatbed uniform flow, in a wide rectangular channel whose bed is composed of uniform, non-ripple forming sand. From the previous discussion, it can be concluded that, for $L/D_p \leq 4$:

1. The shape factor, K_s, can be taken as $K_s = 1.0$, for rectangular round-nosed and oblong cross-section piers, and $K_s = 1.2$, for rectangular square-nosed and pile-group cross-section piers.
2. K_θ does not vary significantly with the duration of tests, this way confirming the robustness of the experimental results reported by Laursen and Toch (1956) obtained for short experiments.
3. The effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of 1.0–1.2.
4. For values of $L/D_p < 4$, K_s are of the same order of magnitude of K_θ and should not be neglected.

Acknowledgments

This work was partially funded by projects RECI/ECM-HID/0371/2012 (FEDER, program COMPETE, Portuguese Foundation for Science and Technology, FCT) and PTDC/ECM/101353/2008 (FCT).

References

